Ring spinning is a method of spinning fibres, such as cotton, flax or wool, to make a yarn. The ring frame developed from the throstle frame, which in its turn was a descendant of Arkwright's water frame. Ring spinning is a continuous process, unlike mule spinning which uses an intermittent action. In ring spinning, the roving is first attenuated by using drawing rollers, then spun and wound around a rotating spindle which in its turn is contained within an independently rotating ring flyer. Traditionally ring frames could only be used for the coarser counts- but they could be attended by semi-skilled labour.
A ring frame was constructed from cast iron, and later pressed steel. On each side of the frame are the spindles, above them are draughting (drafting) rollers and on top is a creel loaded with bobbins of roving. The roving (unspun thread) passes downwards from the bobbins to the draughting rollers. Here the back roller steadied the incoming thread, while the front rollers rotated faster, pulling the roving out and making the fibres more parallel. The rollers are individually adjustable, originally by mean of levers and weights. The attenuated roving now passes through a thread guide that is adjusted to be centred above the spindle. Thread guides are on a thread rail which allows them to be hinged out of the way for doffing or piecing a broken thread. The attenuated roving passes down to the spindle assembly, where it is threaded though a small D ring called the traveller. The traveller moves along the ring. It is this that gives the ring frame its name. From here the thread is attached to the existing thread on the spindle.
The traveller, and the spindle share the same axis but rotatee at different speeds. The spindle is driven and the traveller drags behind thus distributing the rotation between winding up on the spindle and twist into the yarn. The bobbin is fixed on the spindle. In a ring frames, the different speed was achieved by drag caused by air resistance and friction (lubrication of the contact surface between the traveller and the ring was a necessity). Spindles could rotate at speeds up to 25000 rpm,[citation need this spins the yarn. The up and downring rail motion guides the thread onto the bobbin into the shape required: i.e. a cop. The lifting must be adjusted for different yarn counts.
Doffing is a separate process. An attendant (or robot in an automated system) winds down the ring rails to the bottom. The machine stops. The thread guides are hinged up. Removing the bobbin coils (yarn packages) on the spindles, and places a new bobbin tube on the spindle trapping the thread between it and the cup in the wharf of the spindle. This done, the thread guides are lowered and the machine restarted. On new machines, all the processes are done automatically, the yarn can then be transported to a cone winder.
Latest machines with new production/quality standard are from Rieter (Switzerland), Toyoda (Japan). Zinser (Germany)and Marzoli (Italy). Rieter had a monopoly in their compact K45 system, a machine with 1632 spindles, Toyoda has also announced a machine with 1824 spindles. Spinneries typically have many machines in huge halls in controlled atmospheric condition
Raymond Ltd. Denim Division, Yavatmal :
Blow Room Automation
Upgrading of existing conventional control system to Allen Bradley PLC and Hi-Tech 10.5” Color Touch Screen MMI for Blow Room.
i) Ring Line Blow Room ii) Open End Line Blow room iii) Waste Recovery.
No comments:
Post a Comment